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The determination of the rate of dissipation 
in turbulent pipe flow 
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Measurements of turbulence energy diffusion and the spectral distributions of 
stress components in the core of turbulent pipe flow are presented. The results 
tend to confirm the proposal of Bradshaw (1967a, b)  that an inertial subrange in 
the spectra can exist at  quite modest laboratory Reynolds numbers. They also 
illuminate the inconsistencies in Laufer’s ( 1954) measurements of dissipation and 
suggest that the fitting of a -$ power law to the spectra may well provide the 
most accurate method of determining dissipation for Re 2 105. 

1. Introduction 
Studies of the turbulence energy processes in shear flows have all suffered from 

uncertainty in determining the rate of turbulent dissipation into heat. As shown 
by Hinze (19591, this is given precisely by 

(where ui is the component of the fluctuating velocity in the xi direction) but the 
approximation of homogeneity in the small-scale motions, which clearly con- 
tribute most significantly t o  the dissipation, reduces this expression to the more 
convenient form 

The ‘classical’ approach to determining E is to measure some (up to five) of the 
nine contributions to this sum, and to assume that isotropic relations may be 
used to derive the remainder. This is the method of Laufer (1954) for pipe flow, 
and Klebanoff (1955) for a boundary layer, both investigations being conducted 
with the same equipment. 

As Laufer himselfindicated, his results contained several inconsistencies : these 
will be discussed further in the next section. Moreover, the method is laborious 
and time-consuming and its accuracy depends critically upon the high-frequency 
response of the hot-wire equipment and the validity of the isotropic assumptions. 
Unfortunately accuracy is often required in these studies because of the require- 
ment to identify the small differences in the rates of production and dissipation of 
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turbulence, which indicate that the fluid layer is not in a state of equilibrium. 
There is thus a strong incentive to devise a method for inferring e without 
recourse to measurements of the velocity derivatives. 

Bradshaw (1967a, b )  has proposed a suitable method in which the Kolmogoroff 
(1941) hypothesis of an inertial subrange is assumed to apply to a relatively 
easily measured region of the one-dimensional spectrum function. Stringent 
conditions which are seldom fulfilled in laboratory flows for the existence of the 
inertial subrange, have been propounded by several workers, such as Stewart & 
Townsend (1951) and Batchelor (1956), but Bradshaw has suggested that 
sufficient conditions are in fact quite frequently fulfilled. 

The Kolmogoroff hypothesis of universal equilibrium, as discussed by Batchelor 
(1956), is based upon the statistical independence of the components of 
fluctuating velocity at  high wave-number, and hence the existence of ‘local ’ 
isotropy. For these high wave-number dissipating motions to be in equilibrium, 
they must be independent of the wave-numbers associated with the conversion 
of energy from the mean flow. (Since this ‘production’ of turbulence is by the 
working of the Reynolds stresses against the mean strain field, these wave- 
numbers are anisotropic by definition.) Complete independence requires that 
the two ranges do not overlap at all, but the practical implication of the equili- 
brium hypothesis, that the equilibrium range of wave-numbers is uniquely 
determined statistically by the parameters E and Y, may well hold to a good 
approximation when there is some overlap. The only necessary condition for the 
spectrum of a velocity component to have an equilibrium range appears to be 
that the rates of production, diffusion (from other layers of the flow), and transfer 
from other components, be small compared with the rates of dissipation and of 
inertial transfer through the spectrum in that range. Complete isotropy is 
therefore not required but the condition that the transfer from one component 
to another be relatively small suggests that the normal stresses due to these com- 
ponents will be approximately equal in the wave-number range. 

This condition, termed ‘ second-class local isotropy’ by Bradshaw, does not 
preclude the existence of shear, and in fact includes an inherent anisotropy by 
giving special emphasis to the direction of flow and any two directions at  right 
angles. The reason for this could be that in boundary-layer flows all turbulence 
energy is initially produced in the component in the flow direction and then 
distributed among the other components through the pressure fluctuations, The 
distribution is probably most rapid in the perpendicular directions, tending to 
equalize these components before isotropy extends to the whole stress field. 

Furthermore, the hypothesis of a subrange at the low wave-number end of the 
equilibrium range, in which there is independence of viscosity also, may only 
necessitate that the rate of dissipation be small in that subrange compared with 
the remaining process, that of inertial transfer through the spectrum. Since the 
spectral function can then depend only on E ,  the rate of inertial transfer as well as 
dissipation, dimensional analysis shows that it must have the form 

in this ‘inertial subrange’. If indeed this equation holds when production, dif- 
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fusion and dissipation are small, but appreciable, fractions of the total energy 
exchange, then it does provide a comparatively easy method of measuring e in 
laboratory shear flows. Only recourse to experiment will decide whether this is in 
fact a sufficient condition. 

In  an attempt to quantify the condition, Bradshaw (1967a) examined results 
for grid turbulence and boundary layers and proposed 

where I is the length-scale of the energy-containing eddies, defined as 

1011 < k < O*l/r, (1.4) 

I = (2U2/3s)8, 

and 7 is the Kolmogoroff length-scale for the equilibrium range, 

In practice, the one-dimensional spectrum only is measured and the condition 

l O / Z  < k, < 0-07/7, (1.5) 

117 > 10/0.07. (1.6) 

E(kJ = KB*kT#, (1.7) 

was found to be 

so that if an inertial subrange is to exist, 

When this condition was satisfied, Bradshaw found 

where K _N 0.55 in the outer layers of shear flows, and 2: 0.51 in the inner layers. 
As will be shown in the next section, the condition (1.6) is fulfilled in pipe flow 

at quite modest Reynolds numbers. It was therefore disappointing to discover 
that Laufer’s results are not compatible with the existence of any kind of local 
isotropy, but Bradshaw concluded that this was not sufficient evidence for his 
proposal to be refuted. 

This view is substantiated by the present work. Measurements of the production 
and kinetic energy diffusion terms in the turbulence energy equation have been 
made by the author for the flow of air through a pipe. These are described in 8 3. 
By estimating the contribution of pressure diffusion, the rate of dissipation in the 
core region has been deduced as the closing term in the equation. This is compared 
in Q 4 with dissipation estimated by the ‘classical’ method from one-dimensional 
power spectral density and spatial correlation measurements. At Re = 9 x lo4, a 
high degree of isotropy was found in the dissipating motions and this is in accord 
with the finding of 3 5, that the rate of dissipation may be accurately determined 
by the Kolmogoroff-Bradshaw hypothesis. 

2. Dissipation in pipe flow 
2.1. Similarity considerations 

The turbulence energy equation for the fully-developed steady flow of fluid in a 
pipe of radius a may be written in cylindrical co-ordinates 
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where q2 = u2 + v2 + w2, and the small type denotes fluctuating quantities. 
Certain viscous terms have been neglected on the grounds that they are 

O(vu3/a2) 

(whereas the remaining two on the left-hand side are O(uS/a)) and are thus negli- 
gible at  turbulent Reynolds numbers in the core region of the flow. This core 
region embraces those parts of the flow at which the velocity defect and the 
fluctuating velocities, when normalized by the wall friction velocity, are in- 
variant with respect to Reynolds number. It is expected that this Reynolds 
number similarity extends to  the triple velocity products also, so that the pro- 
duction and diffusion terms are in fact proportional to u:/a as well as being of that 
order. In  this case, the dissipation rate must have the same proportionality, and 
if the microscales are defined in the usual way, 

~~ 

their Reynolds number dependence is established by the above argument, pro- 
vided the structure of the dissipating motions is also preserved. For 

must be independent of Reynolds number, so 

A,,,/acc (a+)-$, (2.4) 

where the superscript +denotes non-dimensionalization by v and u,. This pro- 
portionality provides a test for the accuracy of measurements of microscales. 
Total isotropy is indicated if the A’s are all equal as well as the%:’s, so in that case 

(See Hinze 1959.) If only the small-scale motion is isotropic then ( 2 . 5 )  still holds, 
although 2 + 3 $: 3 and the A’s are not all equal. 

2.2.  Laufer’s measurements of dissipation 
With the above similarity consideration in mind, Laufer made measurements at 
two widely separated Reynolds numbers and corrected errors in one set by 
reference to the other. It should be noted that his constant-current hot-wire 
equipment did not include linearizers, and this must have complicated the 
measurements. Indeed those of diffusion, involving triple correlations, are likely 
to be seriously in error, due to distortion, and this is substantiated by large 
discrepancies in the results for the two Reynolds numbers. 
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The microscales were measured in two ways, A,,, A,, and A, by electronic 
differentiation of the hot-wire signals and the assumption that Taylor’s hypo- 
thesis holds, and A,., and A$, by physically separating two wires and measuring 
the correlation coefficient between their signals. The total value for dissipation 
in the pipe a t  Re = 4.0 x lo4, obtained by assuming the isotropic relations between 
derivatives 

and 

came to within 10 % of the total production. Of the other isotropic relations, 

- __. 

1 5 7  
held approximately but (g)2=(g)2==((,) 
was apparently so far in error that use of equation (2.5) would have made the 
total e for the pipe too small by a factor of 2.5. At Re = 4.3 x lo5 the values of 
dissipation inferred from production and diffusion were everywhere 100 % greater 
than those estimated from the microscale measurements, and this is reflected in 
the failure of the microscales to vary according to equation (2.4). 

Assuming the validity of the triple correlations at  the higher Reynolds number, 
and the microscale measurements at the lower, Laufer showed, by taking it to 
be the closing term in (2.1), that the diffusion of pressure energy is small in the 
core region, compared with the diffusion of kinetic energy. As both the kinetic 
energy diffusion and dissipation rates may well have been inaccurately deter- 
mined, this evidence is slim: neither should evidence regarding lack of isotropy in 
the small-scale motion be regarded as conclusive. 

2.3. The existence of an inertial subrange 
The approximate condition ( 1.8) may be translated into easily appreciable terms 
by substitution in terms of A,, and use of (2.5). (The definition of 1 for homo- 
geneous grid-turbulence is retained for shear flows, although $+ +qz, for 
convenience.) The condition becomes 

Re, 2 140, (2.9) 

where Re, = Gh,,/v, 

and since Laufer’s higher Reynolds number results were all at  Re, > 200, an 
inertial subrange in his spectra is expected on the evidence of the flows examined 
by Bradshaw. Laufer did indeed find an appreciable range (10 < ak, < ZOO) of his 
spectrum which varied as Icy+, at the higher Reynolds number, but calculation 
of the dissipation according to (1.7) for a radial position of rla = 0.72 gives a value 
about 8 of the measured, and only t of that deduced from the more reliable low 

31 F L M  48 
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Reynolds number results. The measured spectra of the components did not obey 

(2.10) 

in this range either. 
It is extremely unlikely that the differences between boundary-layer and pipe 

flows can cause a breakdown of the inertial subrange: there is thus basic disagree- 
ment between the data of Laufer and Bradshaw. A programme of measurements 
to check Laufer’s work is described in the next section. 

Some evidence in favour of Bradshaw’s conclusions has already been provided 
by Comte-Bellot’s (1965) study of channel flow. She found K = 0.51, at least 
when Re,, > 300. 

3. Basic experimental results 
3.1. Equipment 

Details of the experimental arrangement are given in Lawn (1970) : the salient 
features are as follows. Air was blown through a honed channel, 14-43cm in 
diameter, and 60 diameters in length. Measurements were made in a plane one 
diameter below the outlet to atmosphere. The surface of the pipe at the inlet was 
roughened to promote flow development. 

Mean velocity measurements were made with a total head tube and this was 
also used to calibrate the mass flow meter and the three hot-wire probes. Two of 
these were DISA standard single and X-wire probes: the third was specially made 
to allow accurate separation of two parallel wires. Pressures from 25 wall- 
tappings, equally spaced along the channel, and the mass flow rate from the 
calibrated device on the fan inlet, were used to determine the friction factor 
initially: in some of the later runs, the mass flow rate alone was recorded and the 
wall shear stress deduced from the friction factor curve. 

The anemometers were DISA constant-temperature devices with linearization. 
Details of the processing system and operating techniques are t o  be found in 
Lawn (1969, 1970). Stability of the X wires was achieved at a gain setting which 
gave a flat frequency response to 3kHz at an air velocity of 10m/sec, with the 
- 3dB point at  16 kHz. Somewhat poorer response was accepted for the single 
wire probes. Signals were squared when necessary by a Fenlow MX 101 analogue 
multiplier, and a Leevers-rich E44M FM tape recorder was used in the analysis. 
First, the tape recorder allowed frequency transformation of signals by factors of 
up to 32, so that steady r.m.9. readings of low-frequency components could be 
obtained; and secondly it made possible the measurement of the real component of 
cross-spectral density, using the same wave analyser, a Muirhead K-124-A, on 
both channels. Considerable care was taken to ensure that the frequency response 
of the modulator and demodulator circuits at the selected tape speeds were 
adequate for the task in hand. Correlation measurements were performed on a 
DISA 55D70 analogue correlator. 

In  X-wire measurements, the sensitivities of the two wires were carefully 
matched and the mean measured from the calibration plots to an estimated & 1 yo. 
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To improve upon the accuracy of the correlation between the two velocity 
components, which depends critically upon the accuracy of matching, the mean 
result of two traverses (the second with the relative wire positions reversed) was 
taken in each run. 

The response of a wire to yaw was assumed to have the form 

Ueti = U(cos2/3+k$sin2/3)4, (3.1) 

where /3 is the angle of the wire-normal to the velocity vector. This was checked 
with one of the probes in a controlled yaw experiment which gave kb = 0-23 in the 
velocity range of present interest, Iom/sec < U < 45m/sec. No corrections for- 
wall interference, turbulence intensity, or wire-length effects were made (see § 3.5). 

3.2. Preliminary results 

Velocity traverses in four quadrants of the pipe showed that a mean profile 
described the flow distribution to within f 0.5 %. The friction factor results 
agreed with the correlations 

f = 0.079 Re-0.25, 3 x lo4 < Re < lo5 (3.2) 

and f = 0-046 Re-0.20, 2 x lo5 < Re < 3 x los, (3.3) 
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Symbol v n v A 
FIUURE 1. Non-dimensional velocity profiles. 

Run 27 25 24 26 28 
R e x  3.67 5.95 9.21 16.9 24.9 

31-2 
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to within 3 %, and a U f f  versus yf plot (figure 1) shows a universal region obeying 
the Pate1 (1965) correlation 

u+ = 5.5010gy++5.45. (3.4) 

The agreement with equation (3.4) is rather better than shown in figure 1, for 
the random error in friction velocity (estimated to be less than 3 yo) may be 
partially eliminated by taking a smoothed friction factor curve in conjunction 
with the measured mass flow for each run. A velocity defect plot (figure 2) shows 
no systematic Reynolds number effect for 0 < rla < 0.9, and the ratio of mean 
to maximum velocity, which is an indication of the degree of development of the 
flow, varied from 0.806 to 0.833 over the range 3-5 x lo4 < Re < 2.5 x lo6. 
Nikuradse’s (1932) ratios were somewhat larger than this (0.81 to 0.85) with 
L / d  = 120, but so too were Laufer’s with Lld  = 50, so these results are incon- 
clusive. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

rla -+ 

FIGURE 2. Velocity defect in a smooth pipe. Symbols same as figure 1. 

The linearity of the measured turbulence shear stresses for four different 
Reynolds numbers (figure 3) does, however, encourage the belief that the flow was 
to all intents and purposes fully-developed. But although the distributions, 
taken in the same circumferential position, are linear in the range r/a = 0 - 0.8 
and give gradients of shear stress within 4 yo of that anticipated from the pressure 
gradient results, the points on the uV/u3 plot are displaced an average distance of 
0 . 0 3 ~  towards the pipe wall, contributing to errors of up to - 9 yo a t  r/a = 0.7. 



Rate of dissipation in turbulent pipe $ow 485 

(For ria > 0-8, errors due to the large mean velocity variation along the wire are 
expected.) The small degree of asymmetry detected in the mean velocity profiles 
could perhaps be reflected in the shear stress distribution and some support for 
this is to be found in the absence of the discrepancy from earlier results taken in a 
different quadrant of the same duct (Lawn 1969). 

The axial component of turbulence velocity, as measured by three different 
wire configurations at  the same Reynolds number, is shown plotted in figure 4, 

1.0 * 

0.9 . 

/ 
/ 

/ 
/ 

I 
rla + 

FIGURE 3. Shear stress measurements. - , mean of measurements; - - -, deduced for 
symmetrical %ow. 

Symbol 0 X + 0 * 
RUIl 53 50 47 54 52 

R ~ X  10-4 3.8 8.8 - 9.0 16.4 25.0 
- 



486 C .  J .  Lawn 

together with a somewhat arbitrarily drawn 'mean curve' from figure 5.  Bands 
of -F. 4 % about this curve embrace all the points for the four traverses. This is not, 
however, a measure of the standard deviation of a single point in a traverse, but 
of the run as a whole, for the deviations are largely systematic, indicating errors 
in calibration or friction velocity, or possibly of wire-response, rather than in 
recording. 

I I I I I I I I I I 
0 0-1 0.2 0.3 0.4 0.5 0-6 0.7 0-8 0.9 1.0 

r/a -+ 

FIGURE 4. Fluctuating velocity distribution: one Reynolds number, Re = 8.7 - 9.2 x 10'. 
Run no.: v, 24 single-wire transverse; 0, 49, X-wire transverse; x , 50, X-wire radial; 
+, 47, X-wire radial; - , mean of measurements in figure 5. 

This uncertainty of f 4 yo must be borne in mind when the results for four 
different Reynolds numbers are examined in figure 5. Thus although the low Rey- 
nolds number points (Re = 3.8 x lo4) all lie below the mean line for Re = 9.0 x lo4, 
and one set of highReynoldsnumber points (Re = 16.4 x lo4) alllie onor aboveit, 
this trend cannot be considered significant, particularly as it is reversed by the 
highest Reynolds number (Re = 25.0 x 104). The same relationship between the 
runs is seen in the v"/u, results, but again the differences are not statistically signifi- 
cant and this supports the contention above as to  their origin. Of necessity the 
correlation coefficient is therefore also independent of Reynolds number (figure 5) 
and the similarity assumed in § 2.1 is confirmed. 
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These results are similar to those of Laufer, except for the higher values of 
.ii/uu, recorded near the centre-line of the duct in the present work. A Reynolds 
number of 9 x lo4, intermediate between Laufer’s, was selected for more detailed 

2.2 - 

2.0 - 
1. 
;i” --- 
G 

1.8 - 

1.6 - 

.T. 1.4 

‘3 

- 
3” 
\ 

1.2 - 

0 

6 
1 I 1 1 1  1 1 1 I I 

lp 0.1 0 2  0.3 0-4 0.5 0.6 0.7 0.8 0-9 1.0 

r/a + 

FIGURE 5. Fluctuating velocity distributions : several Reynolds numbers. -, mean of 
measurements. X-wire measurements : 

Symbols a 0 X + 0 * 
Run 53 49 50 47 54 52 

R e x  lo-* 3.8 8.7 - 9.0 16.4 25.0 
- 
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FIGURE 

I 

rja -+ 

6. Triple correlation coefficients. 

Symbol 0 X 0 
Run 49 50 51 

~e x 10-4 8.7 - 8.8 3.8 
- * 

52 

25.0 



Rate of dissipation in turbulent pipe flow 489 

study as being a compromise between the inaccuracies in recording unsteady 
low-frequency signals and the poor response of the equipment to high frequency 
(see 53.5). 

‘i 

r/a + 
FIGURE 7. Flattening factors. Re = 8.8 - 9.0 x lo4: 

0, run 48; x, run 50. 

3.3. Multiple correlations 

The directly measured triple correlation coefficients appear in figure 6, and the 
flattening factor results in figure 7. These may be combined to give the true triple 
correlations through equations of the form 

where u ; ~  is the a.c. component of the squared velocity and the tilda super- 
script denotes r.m.8. values. 

Once more there was a displacement in the apparent effective centre of the pipe, 
and once more there was no conclusive Reynolds number trend as far as the 



490 C. J .  Lawn 

‘diffusion’ results, u%/uSCG and V ~ / V ~ ~ B ,  were concerned. The skewness factor 
of u was measured with the wires first in the circumferential, and then in the 
radial plane, and a large discrepancy appears in the results, but both indicate no 
skewness at  the point r /a  = 0.9. The correlations Uv2/.iiv& and u?/.iiwTc were 
also measured, but W ~ V / W ~ ~ G  was not. 

The two diffusion results agree qualitatively with Laufer’s high Reynolds 
number values. 

N - N  

N - -  

ak, -+ 
FIQURE 8. Power spectral density-axial component, wave-number plot. 

r /a  = 0.35. R e x  V, 3.67; A, 5.95; v,  9.21; A, 16.9; .. 24.9. 

3.4. Xpectral analysis 

The data was collected ‘manually ’, by scanning through the frequency spectrum 
with a bandwidth of constant percentage (nominalIy 10 yo). In  the case of the 
power spectra, the upper frequency limit was determined by the limitations of 
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the anemometer: in the case of the cross-spectra, it was set at  2 kHz by the upper 
frequency limit of the modulator in the tape-recorder. The r.m.s. values of the 
filtered signals were normalized by the all-pass value, and the normalized spectral 
densities 

were integrated as a check on the technique. The average bandwidth of the 
analyser was thus deduced to be 12.8 yo from a large number of integrations 
(one direct measurement at 175Hz gave 12.5 yo) and all the spectral density 
plots presented here, with two exceptions, then integrated to unity to within 6 yo 
in the case of the axial velocity component and to within 10 % for the transverse 
velocity and shear stress spectra. 

1 

10-1 

10-2 

1' 
$ 1 0 - 3  
h 

v 

6 

1 0 - 4  

10-5 

10-6 

rla=O 

10-2 10-1 1 00 10' 1 0 2  103 

ak, -+ 

FIGURE 9. Power spectral density-axial component, single wire. Re = 9 x lo4. r/a : 0 , O . O O ;  
A, 0.18; v ,  0.35; ., 0.53; 0, 0.70; +, 0.88; X ,  0.95. 
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Conversion of the frequency plots to one-dimensional wave-number plots 
assuming Taylor’s hypothesis was done in such a way as to maintain the 

(3.7) 
normalization, i.e. F(ak,) = F(n)n/ak, = F(n)U/2na. 

10-c 

I 

10-1 

lo-’ 

t 
s h 

e 10-2 

k= 

10-4 

10-5 

I I I I 

1 0 - 2  10-1 1 00 10‘ 102 103 

FIGURE 10. Power spectral density-axial component, X-wire. Values of r/a 
same as figure 9. Re = 9 x lo4. 

The wave-number density functions obtained with a single wire at r/a = 0-35 
are plotted in figure 8 for a range of Reynolds numbers, and the influence of 
viscosity is clearly seen in the high wave-number dissipating motions. There does 
appear to be a ‘saturation’ effect at  Re = lo5, for the three highest Reynolds 
numbers have apparently identical high wave-number curves. This will be 
explained in § 3.5. Because only a very small fraction of the total energy is found 
in ak, > 30, the divergence of the curves in that region does not significantly 
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affect the low wave-number end, even though all curves must integrate to unity 
by definition. 

Concentrating now upon the chosen Reynolds number, 9 x lo4, the normalized 
power spectral density curves of the axial component for seven radial positions 
were obtained both with a single wire (figure 9) and with an X wire (figure 10). In  
positions of low turbulence intensity, there is evidence in both plots that noise 
in the electronic system obliterated the true signals at  7 kHz. However, compari- 
son shows that the details of one plot are nearly all faithfully repeated in the 
second, encouraging confidence in the analysis technique and the addition of 
signals from two wires. Power spectral densities for the other components and the 
real component of the cross-spectral density are shown in figures 11 to 13. (The 

1 

10-1 

10- 

t 
$ 10- 

G 

h 

v 

10- 

10- 

lo-' I I 1 1 I 
10-2  10-1 100 10' 102 103 

ak, + 

FIGURE 11. Power spectral density-radial component. 
Re = 9 x lo4. Values of rfa same as figure 9. 
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two curves which do not integrate to unity to within 10% are Fez(ak1) and 
Fwz(ak,) at r/a = 0.35.) 

In  order to compare the spectral distribution of energy between the com- 
ponents, the density functions Euiuj(akl) without normalization are plotted in 
figure 14 (r/a = 0.53) and figure 15 (r/a = 0.88). It emerges that the shear stress 
falls away far more rapidly than the energy at high wave-number, although it is 
still appreciable when the isotropic relation between Buz andEVs, equation (2.10), 

10-1 

10-2 

10-3 
t 
*- - e 
v 

d 
10-4 

10-5 

10-6 1 1 I I J 
10-2 10-1 10-0 10' 1 oz 103 

akl + 

FIGURE 12. Power spectral density+ircumferential component. 
Re = 9 x 10'. ria: v,  0.35; x ,  0.95. 

begins to hold approximately (to within 10%). This is 'second-class local 
isotropy', and even before it is established, the power density functions begin to 
vary approximately as k$. (Only well away from the wall is there a clear range of 
wave-numbers with this variation.) As is seen in figure 16, the shear stress is so 
far from zero a t  this point (ak, = 20) that the correlation coefficient, Rw,(akl) is as 
high as 0.4 for r/a = 0.88. 



Rate of dissipation in turbulent pipe $ow 495 

3.5. Deficiencies in hot-wire response 

No corrections have been applied to the data presented so far but two distinct 
types of error were certainly present. 

The first has been discussed by Kovasznay (1954) and is the obvious one arising 
from the loss of response to high frequencies, inherent in the anemometer 
equipment. In  fact, ak, = lo2 corresponded to n - 2.5 kHz at  Re = 9 x lo4 on the 
pipe centre-line, but to n - 7 kHz a t  Re = 2.5 x lo5, and since tliere was some 
loss of response above 3 kHz the higher Reynolds number results for ak, > lo2 
in figure 8, cannot possibly be correct. This partially accounts for the ‘saturation’ 
effect already noted. The same effect was almost certainly present in Laufer’s 
results but no details of the frequency response of his system are given. 

1 r  

1 0 - 2  10-1 100 10’ 102 103 
ah, -+ 

FIGURE 13. Cross spectral density-shear stress. 
Re = 9 x lo4. Values of r/a same as figure 9. 

The second type of error is due to the finite length of the wire and has been 
discussed by Uberoi & Kovasznay (1963), Frenkiel(l954) and Wyngaard (1968). 
(Laufer applied corrections to his measurements using the first paper.) Here we 
find from the second paper that the correction to turbulence velocities, including 
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all frequencies, is less than 2 yo a t  Re = 2.5 x lo5, but from the third paper, that 
the correction to the energy at  non-dimensional wave-numbers, ak, - 100, may 
be as large as 20 % even at  Re = 9 x lo4. Wyngaard evaluated the corrections for 
various ratios of Kolmogoroff length-scale to wire-length (here between 0.08 and 
0.17 for Re = 9 x lo4), and also corrected for the effect of the lateral separation 
of the wires of an X probe. Note that the ki* regions of the spectra are not affected 
by these corrections at  Re = 9 x lo4, but that deviations from the isotropic rela- 
tion at slightly higher wave-numbers might be accounted for by the latter effect. 
At  any rate, some correction is certainly necessary in evaluating the microscales, 
which depend on even higher wave-numbers. 

1 I I 
10-1 1 0" 10' 

ak, -+ 

FIUURE 16. Local correlation coefficients in wave-number space. 

R,, ( a h )  = E,, (akl)/[E,P (akl)Ews (Uk,)l*.  

r/a: A, 0.18; V, 0.35; ., 0.53; 0, 0.70; +, 0.88; X ,  0.95. 

3.6. Microscales from the spectra 
By graphical integration of the spectral curves and use of 

the variation of the microscales across the pipe radius was evaluated. Most of the 
results in figure 17 were obtained with an X probe having a wire separation of + of 
the wire-length: these were not corrected. The correction to the single-wire results 
was, however, calculated from Wyngaard's published curves. It amounted to a 
reduction in A,/a of 5 %, in the centre of the pipe, and of 16 % near the wall. 

From the single-wire results was also calculated the variation of A,, with 
Reynolds number, represented in figure 18 by a+. Now according to equation 
(2.4)) hxU/ax (a+)-*, and this variation does approximately describe the measure- 
ments for the three lowest Reynolds numbers. Both types of error described above 
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prevented evaluation a t  the two highest Reynolds numbers. Taking the corrected 

0 . 0 5 t  

t 
0.04 . -.I 

s 
4 

0.03 

0.02 

0.01 

0 

value on the centre-line at Re = 9 x lo4, we have 

&.,/a = 2*8(a+)-*, 

h,Ja = 2.3(~+)-*  compared with Laufer's 

based on Re = 4.3 x lo4. 

X 
0 

+ 

& A  - 
0 

A - x 0  + 
X - 

- 

I I I I I '1 I I I 

0.07 1 
A 1 

8 
0 8 0.06 f 

I 

& 
? 
0 

X 

X 

(3.9) 

(3.10) 

0 

FIQURE 17. Radial distribution of microscales. Re = 9 x 104. 

Spectra Radial correlation 

A,,/a single wire hru/a A 
0 single wire corrected 1 0 X-wire 

h,,/a x X-wire 
h J a  + X-wire 

3.7. Two-point correlations 
The two-wire probe, comprising parallel wires 1 mm long which could be moved to 
within 0.25 mm of each other, was used to measure the radial correlation coeffi- 
cient, and the microscale was deduced from the relation for turbulence which is 
homogeneous on a small scale, 

1 - R,a(s) 
X U  8 - 4  

(3.11) 

from plots such as figure 19. The fact that the points do not extrapolate to the 
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originreduces confidence inthe results, but only in two cases (for positions near the 
centre-line of the pipe) was the extrapolated correlation coefficient less than 0.97. 
Wire separations were determined by travelling microscope but because of a 
certain amount of bowing in bothwires, the effective separation was not known to 
bebetter than 0.05mm. More significant than this is theinaccuracy of the analogue 
correlator for signals with coefficients near unity and of low frequency (given as 
& 0.03 by the manufacturers) and this probably accounts for the discrepancy 
from unity. It would result in a systematic error in R,,(s) varying with the 
characteristic frequency of the signals but this should not affect the accuracy of 
the curvature measurements. 

0.09 

0.08 

0.07 

0.06 

t 0.05 
2 
<* 0.04 
2 

0.03 

0.02 

0.01 

0 

Deduced variation 

0 

Deduced variation 
A&= 1,4(u+)-' 

I I I I 

a+ -t 

FIGURE 18. Reynolds number variation of microscales. 

Spectra Radial correlation 

r la L l a  4ula 

0*35 ( z  corrected 0 

0'96 {& corrected + 
The uncorrected results of these measurements are included in figures 17 and 

18. At the selected Reynolds number, the microscales A,, and A,, agree closely 
over the whole of the radius, except quite close to the wall. However very little 
Reynolds number variation can be detected in A,,: either the results are in error 
or there is no structural similarity in the dissipating motions. This is further 
discussed in the following sections. 

32-2 
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0 ’  I I I 
0~0001 0.0002 0.0003 

(+)2 + 

FIGURE 19. Determination of microscale from radial correlation measurements, 

Re = 9 x lo4. (a/&J2 = a2“(l - R,2(s)}/s2]84. 
r /a:  0, 0.0; 0, 0-70; x ,  0.95. 

4. The rate of dissipation by classical methods 
4.1. Dissipation by difference 

The rate of dissipation may be estimated from equation (2.1) as the closing term 
in the balance with production and diffusion. The chief disadvantage of this 
approach is that the diffusion of pressure energy, as expressed by the @/p 
correlation, has not been measured in duct flows, although Kobashi (1957) has 
made measurements in a wake. His results for the core of the flow show the pres- 
sure term having a magnitude one quarter of that of the kinetic energy diffusion, 
and the same variation. In  this investigation, no measurements of the triple 
correlation wx2 were made either: from Laufer’s results we expect 

- 
vw2 N 9.” N +$v. 

On this rather scanty evidence, an estimate for the total diffusion is 

N _ _ _  a {r(&+G3)} 
4 r  dr 

but this could be considerably in error. It is, however, likely to be a more reason- 
able estimate than one based upon the complete neglect of pressure diffusion. 
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The diffusion was evaluated using (4.1) from the graphical differentiation of 
the triple correlation results for Re = 9 x lo4. The distribution is shown in figure 
20. Because the triple products could not be measured right up to the wall, it is 
not possible to check the divergence calculation by integration of the diffusion 
curve. Clearly, however, the wall layer loses energy rapidly to the core, as was 
observed by Laufer. 

I I I I I 

r/a -+ 

FIGURE 20. Turbulence energy balance. Dissipation determined : -, by difference; 
x , from microscales; 0, from Kolmogoroff hypothesis. 

The rate of strain of the mean flow was determined by graphical differentiation 
of the velocity defect plot to give the rate of production of turbulence energy. 
Relatively little error may be expected in this procedure. 

Addition of the rates of production and diffusion leads to the dissipation curve 
in figure 20. Once more there is close similarity with Laufer’s low Re results, but 
here the presence of an equilibrium layer (in which production and dissipation 
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are locally balanced) between rla = 0.7 and 0.9, is more clearly indicated, 
because Laufer’s measured diffusion rate was still appreciable in this layer, 
whereas in the present work it was negligible. 
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PICURE 21. Comparison of velocity derivatives. Re = 9 x lo4. 

4.2. Degree of isotropy 

Of the four velocity derivatives measured, two, (au/ax)2 and Q(au/ar)2, have 
already been effectively compared, for in figure 17, the equality of A,, and A, 
(for ria < 0.8) implies equality of these derivatives as demanded by isotropy. 
Two more, g(av/ax)2 and S ( a w / a ~ ) ~ ,  computed from the uncorrected spectra, are 
compared with (au/ax)2 in figure 21, and again the isotropic demand for equality 
is met in the range rla < 0.8. 

As the maximum contributions to the integral of the form (3.8) come from 
non-dimensional wave-numbers ah, N lo2, the evidence of figure 16 is also in 
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favour of a high degree of isotropy in the dissipating motions, for ria < 0.8 a t  any 
rate (R,,(ak,) < 0.1). 

These remarks apply to Re = 9 x lo4, but from figure 18 it appears fihat they 
do not apply to smaller Reynolds numbers. It may well be that at smaller 
Reynolds numbers, the production and dissipation ranges of the spectrum are not 
sufficiently separated for complete isotropy, and this is in agreement with 
Laufer’s results for Re = 4.0 x lo4. 

4.3. Dissipation from the microscales 
The microscale results for Re = 9 x lo4 suggest that equation (2.5), which assumes 
complete isotropy, will not be grossly in error. However, dissipation estimated 
from this equation is compared with that estimated by difference in figure 20, and 
is seen to be systematically in error by - 29 % (with a, random scatter of only 3 %) 
in the range ria < 0.9. This compares with Laufer’s - 50 % systematic error for 
Re = 4.3 x lo5, using only some of the isotropic relations between derivatives 
(see $2.2). 

Rather than reject the possibility of isotropy at  the higher ReynoIds numbers, 
we may attribute these discrepancies to poor high-frequency response, and in 
particular, to finite wire-length, the errors increasing with Reynolds number. 
Thus it is suggested that Laufer’s low Reynolds number results (Re = 4-0 x lo4) 
are indeed correct (and they do agree with the present ones, obtained ‘by dif- 
ference ’) and that the dissipating motions are still far from isotropic. Isotropy is 
approached as the Reynolds number increases and is already a good approxima- 
tion at  Re = 9 x lo4, but by then errors in hot-wire response begin to disrupt the 
measurements if the ratio of wire-length to pipe radius is greater than as it 
was here. From the corrections calculated for single wires in $3.6, the necessary 
correction to the dissipation calculated from X-wire data at Re = 9 x lo4 is seen 
to be at  least 10 yo in the centre and 35 % near the wall, which largely accounts 
for the observed discrepancy in the present work. 

5. The rate of dissipation assuming an inertial subrange 
Taking a value of 0.55 for K in equation (1.7), the dissipation rate was esti- 

mated from the smoothed spectral curves of figure 10 for Re = 9 x lo4, by fitting 
tangents of slope -$ by eye. The best fit was a t  ak, = 15 for spectra from the 
centre of the pipe, rising to ak, = 30 near the wall. The values of dissipation 
shown in figure 20 were thus derived, and in the range 0 < ria < 0.9, they deviate 
from the curve calculated by difference by less than 15 yo. 

Use of the inner law for K of 0.51, proposed by Bradshaw (1967a), would also 
put the ria = 0.95 value within 15 % of the curve. However, in the core region, a 
value of K = 0.53 is indicated from the present work and this leads to a standard 
deviation of only 8 yo from the smoothed results obtained by difference. The 
uncertainty in the latter results in the centre of the pipe, where diffusion pre- 
dominates, is probably also of this order, but the agreement between the two 
methods is not appreciably worse here than in the equilibrium region near the 
wall, for which there is considerable confidence in the deduced value of E .  (This 
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confidence is, it must be admitted, based upon the assumption of negligible 
pressure diffusion.) 

It was stated in $2.3 that the condition (1.6) for the existence of an inertial 
subrange may be translated to Re, 2 140 for pipe flow. In  the present work, the 
range of Re, was 115 < Re, < 200. Moreover, the apparently least accurate value 
of E was near the pipe wall where Re, was lowest, so the condition appears 
to be the correct one, implying that Re > lo5 for an inertial subrange in the whole 
of the core-flow. This confirms the conclusions concerning isotropy in 3s4.2 and 
4.3 and (1.6) may also be taken as the condition for the dissipating motions to be 
isotropic. 

The advantage of the method of measuring E afforded by assuming equation 
(1.7) has been pointed out by Bradshaw: the spectrum need only be accurately 
measured a t  moderate frequencies, instead of a t  ones an order of magnitude 
greater. Unfortunately the assumption of Taylor’s hypothesis remains implicit 
in the method, but a good estimate of dissipation in any duct or boundary-layer 
flow should beobtained by using it, provided the Reynoldsnumber is high enough. 

6. Conclusion 
Turbulence energy measurements in the core region of turbulent pipe flow 

strongly suggest that the dissipating motions are effectively isotropic for Re 2 105 
and that the hypothesis of second-class isotropy provides the best way of measur- 
ing the dissipation rate, by assuming an inertial subrange even in the presence of 
shear. The formula 

E,t(kl) = 0*53dk$ (6.1) 

gives an estimate of the dissipation rate E with a standard deviation of 8 % for 
Re = 9 x lo4 and 0 < r/a < 0.9. This is in good agreement with the data of 
Bradshaw (1967a, b)  for other shear flows. 

Although the ‘direct ’ measurements of dissipation rate by Laufer (1954) and 
the present author at  ‘high’ Reynolds numbers were probably in error, due to the 
inadequacy of the hot-wire system, these measurements are to be preferred for 
Re < 105, when local isotropy is a poor approximation. 

This paper is published by permission of the Central Electricity Generating 
Board. 
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